On the evaluation of hyper-singular integrals arising in the boundary element method for linear elasticity

نویسندگان

  • C. C. Chien
  • S. N. Atluri
چکیده

The boundary element method (BEM) for linear elasticity in its curent usage is based on the boundary integral equation for displacements. The stress field in the interior of the body is computed by differentiating the displacement field at the source point in the BEM formulation, via the strain field. However, at the boundary, this method gives rise to a hypersingular integral relation which becomes numerically intractable. A novel approach is presented here, where hyper-singular kernels for stresses on the boundary are made numerically tractable through the imposition of certain equilibrated displacement modes. Numerical results are also presented for benchmark problems, to illustrate the efficacy of the present approach. Solutions are compared to the commonly used boundary stress algorithm wherein the boundary stresses are computed from known boundary tractions, and derivatives of known displacements tangential to the boundary. An extension of this approach to solve linear elasticity problems using the traction boundary integral equation (TBIE) is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

Evaluation of singular and hypersingular Galerkin integrals: direct limits and symbolic computation

Algorithms are presented for evaluating singular and hypersingular boundary integrals arising from a Galerkin approximation in two dimensions. The integrals involving derivatives of the Green's function are de ned as limits from the interior, allowing a simple and direct treatment of these terms. An e cient scheme is obtained by using a combined analytical and numerical approach, the analytic f...

متن کامل

The Evaluation Of early Singular Integrals In The Direct Regularized Boundary Element Method

The numerical analysis of boundary layer effect is one of the major concerned problems in boundary element method (BEM). The accuracy of this problem depends on the precision of the evaluation of the nearly singular integrals. In the boundary element analysis with direct formulation, the hyper-singular integral will arise from the potential derivative boundary integral equations (BIEs). Thus th...

متن کامل

On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory

In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004